Evidence for Invariants in Local Search
نویسندگان
چکیده
It is well known that the performance of a stochastic local search procedure depends upon the setting of its noise parameter, and that the optimal setting varies with the problem distribution. It is therefore desirable to develop general priniciples for tuning the procedures. We present two statistical measures of the local search process that allow one to quickly find the optimal noise settings. These properties are independent of the fine details of the local search strategies, and appear to be relatively independent of the structure of the problem domains. We applied these principles to the problem of evaluating new search heuristics, and discovered two promising new strategies.
منابع مشابه
A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملDifferentiable Invariants
Invariants that incrementally maintain the value of expressions under assignments to their variables are a natural abstraction to build high-level local search algorithms. But their functionalities are not sufficient to allow arbitrary expressions as constraints or objective functions as in constraint programming. Differentiable invariants bridge this expressiveness gap. A differentiable invari...
متن کاملInterpolating Property Directed Reachability
Current SAT-based Model Checking is based on two major approaches: Interpolation-based (Imc) (global, with unrollings) and Property Directed Reachability/IC3 (Pdr) (local, without unrollings). Imc generates candidate invariants using interpolation over an unrolling of a system, without putting any restrictions on the SAT-solver’s search. Pdr generates candidate invariants by a local search over...
متن کاملKangaroo: An Efficient Constraint-Based Local Search System Using Lazy Propagation
In this paper, we introduce Kangaroo, a constraint-based local search system. While existing systems such as Comet maintain invariants after every move, Kangaroo adopts a lazy strategy, updating invariants only when they are needed. Our empirical evaluation shows that Kangaroo consistently has a smaller memory footprint than Comet, and is usually significantly faster.
متن کاملIterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem
An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...
متن کامل